Search results for "NANOMECHANICAL RESONATOR"

showing 4 items of 4 documents

The effects of ion implantation damage to photonic crystal optomechanical resonators in silicon

2021

Abstract Optomechanical resonators were fabricated on a silicon-on-insulator substrate that had been implanted with phosphorus donors. The resonators’ mechanical and optical properties were then measured (at 6 K and room temperature) before and after the substrate was annealed. All measured resonators survived the annealing and their mechanical linewidths decreased while their optical and mechanical frequencies increased. This is consistent with crystal lattice damage from the ion implantation causing the optical and mechanical properties to degrade and then subsequently being repaired by the annealing. We explain these effects qualitatively with changes in the silicon crystal lattice struc…

Materials scienceSiliconFOS: Physical sciencesPhysics::Opticschemistry.chemical_element02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceResonatorMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesion implantation010306 general physicsPhotonic crystalCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industrytechnology industry and agricultureMaterials Science (cond-mat.mtrl-sci)silicon021001 nanoscience & nanotechnologyoptomechanicsIon implantationchemistryOptoelectronics0210 nano-technologybusinessnanomechanical resonatorphotonic crystalOptics (physics.optics)Physics - OpticsMaterials for Quantum Technology
researchProduct

Cross-Kerr nonlinearity in optomechanical systems

2015

We consider the response of a nanomechanical resonator interacting with an electromagnetic cavity via a radiation pressure coupling and a cross-Kerr coupling. Using a mean field approach we solve the dynamics of the system, and show the different corrections coming from the radiation pressure and the cross-Kerr effect to the usually considered linearized dynamics.

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsta114Kerr nonlinearitynanomechanical resonatorsDynamics (mechanics)FOS: Physical sciencesPhysics::Optics01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsNanomechanical resonatorCoupling (physics)Classical mechanicsRadiation pressureElectromagnetic cavityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsPhysical Review A
researchProduct

State Preparation and Tomography of a Nanomechanical Resonator with Fast Light Pulses

2018

Pulsed optomechanical measurements enable squeezing, non-classical state creation and backaction-free sensing. We demonstrate pulsed measurement of a cryogenic nanomechanical resonator with record precision close to the quantum regime. We use these to prepare thermally squeezed and purified conditional mechanical states, and to perform full state tomography. These demonstrations exploit large photon-phonon coupling in a nanophotonic cavity to reach a single-pulse imprecision of 9 times the mechanical zero-point amplitude $x_\mathrm{zpf}$. We study the effect of other mechanical modes which limit the conditional state width to 58 $x_\mathrm{zpf}$, and show how decoherence causes the state to…

Quantum decoherenceNanophotonicsGeneral Physics and AstronomyFOS: Physical sciencesPhysics::Opticsnanotekniikka01 natural sciences0103 physical sciences010306 general physicskvanttifysiikkaQuantumPhysicsCouplingQuantum Physicsquantum measurementsbusiness.industryState (functional analysis)optomechanicsNanomechanical resonatorAmplitudefotoniikkaphotonic crystalsOptoelectronicsnanophotonicsTomographybusinessQuantum Physics (quant-ph)Optics (physics.optics)Physics - Optics
researchProduct

Geometric-phase backaction in a mesoscopic qubit-oscillator system

2012

We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro- and nanomechanical devices coupled to an effective two-level system. © 2012 American Physical Society.

Quantum phase transitionPhysicsNANOMECHANICAL RESONATOR; BACK-ACTION; QUANTUM; OPTOMECHANICS; MECHANICS; EVOLUTION; MODEAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaPhase qubitOptical phase spaceClassical mechanicsGeometric phaseQuantum harmonic oscillatorPhase spaceQubitQuantum mechanicsGeometric phases atomic physics quantum interferometryHarmonic oscillator
researchProduct